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Abstract  

Background: There is a recognized need to improve the application of epidemiologic data in 

human health risk assessment especially for understanding and characterizing risks from 

environmental and occupational exposures. While there is uncertainty associated with the results 

of most epidemiologic studies, techniques exist to characterize uncertainty that can be applied to 

improve weight-of-evidence evaluations and risk characterization efforts. 

Methods: This report derives from a Health and Environmental Sciences Institute (HESI) 

workshop held in Research Triangle Park, North Carolina, to discuss the utility of using 

epidemiologic data in risk assessments, including the use of advanced analytical methods to 

address sources of uncertainty. Epidemiologists, toxicologists, and risk assessors from academia, 

government and industry convened to discuss uncertainty, exposure assessment, and application 

of analytical methods to address these challenges. 

Synthesis: Several recommendations emerged to help improve the utility of epidemiologic data 

in risk assessment. For example, improved characterization of uncertainty is needed to allow risk 

assessors to quantitatively assess potential sources of bias. Data are needed to facilitate this 

quantitative analysis, and interdisciplinary approaches will help ensure sufficient information is 

collected for a thorough uncertainty evaluation. Advanced analytical methods and tools such as 

directed-acyclic graphs (DAGs) and Bayesian statistical techniques, can provide important 

insights and support interpretation of epidemiologic analysis. 

Conclusions: The discussions and recommendations from this workshop demonstrate that there 

are practical steps that the scientific community can adopt to strengthen epidemiologic data for 

decision making. 
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Background  and  Introduction  

Human health risk assessments have traditionally relied heavily on toxicological and other 

experimental data, but there is an increased recognition of the value of using epidemiologic data 

in risk assessment. Previous publications (Fann et al. 2011; Jones et al. 2009; Lavelle et al. 2012; 

Vlaanderen et al. 2008) and initiatives have discussed how to improve the application of these 

epidemiologic data to risk assessments. As an example, in early 2010, the U.S. EPA requested 

input from the Federal Insecticide, Fungicide and Rodenticide Act Scientific Advisory Panel on 

approaches for the “[i]ncorporation of epidemiology and human incident data into risk 

assessment[s].” (U.S. EPA 2009a). Epidemiologic studies play a key role in setting national 

ambient air quality standards (U.S. EPA 2009b) and contribute substantially to other thematic 

weight-of-evidence approaches toward evaluating causality based on multiple lines of evidence 

(Rhomberg et al. 2010; Weed 2005). 

The incorporation of epidemiologic evidence into risk assessments is an important part of 

understanding and characterizing risks from environmental and occupational exposures. 

Uncertainty arises from study limitations regarding internal validity, including exposure 

assessment, confounding and other potential sources of bias, and external validity or 

generalization from study populations to the populations for which risk assessments are 

conducted (Guzelian et al. 2005; Hertz-Picciotto 1995; Lash et al. 2009; Levy 2008; Maldonado 

2008; Persad and Cooper 2008). Further, point estimates can be inaccurate because of internal 

validity issues and since confidence intervals only focus on the potential for random error. These 

different sources of uncertainty can have an impact on various steps of the risk assessment 

paradigm (including hazard identification, exposure assessment and dose-response assessment) 

5 



 
 

in that  hazards  are  not  recognized, hazards  are  incorrectly identified,  or inaccurate  dose-response  

characterizations  lead to over- or under-estimation of “safe” exposure levels.  

Epidemiologic  approaches  and statistical  techniques  exist  to  characterize  uncertainty that  can be  

applied to weight-of-evidence  evaluations  and risk characterization efforts.  While  there  is  strong 

theoretical  support  for the  utility of  these  approaches, their translation into regular epidemiologic  

practice  is  lagging.  In addition, the  impact  of  potential  sources  of  error in epidemiologic  studies  

is  often only qualitatively discussed.  For example, with respect  to exposure  measurement  error, 

Jurek et  al. (2006)  sampled papers  from  three  epidemiology journals  over one  year and found 

that  only 61% of  the  articles  made  any mention of  exposure  measurement  error, of  which  only 

46% qualitatively described  the  possible  effects.  Only one  of  57 sampled studies  quantified the  

likely impact  of  exposure  measurement  error on results.  This  incomplete  information 

demonstrates  an opportunity among epidemiologists  to characterize  the  magnitude  and impact  of  

various  sources  of  uncertainty, which can help address  one  of  the  more  difficult  challenges  in 

risk assessment.  

This  report  derives  from  a  workshop held in Research Triangle  Park, North Carolina, in October 

2012 to discuss  the  utility of  using epidemiologic  data  in risk assessments, including the  use  of  

advanced analytical  methods  to address  sources  of  uncertainty.  The  objective  of  the  workshop 

was  to develop recommendations  on strengthening epidemiologic  studies,  so that  these  data  can 

more  effectively be  integrated in risk assessments.  The  HESI workshop was  focused specifically 

on uncertainty, exposure  assessment, and application of  analytical  methods  to address  these  

challenges.  Cross-disciplinary experts  in epidemiology, toxicology, exposure  assessment, and 

risk assessment  attended the  workshop.  A full  list  of  workshop participants  is  available  online  

(http://www.hesiglobal.org/i4a/pages/index.cfm?pageID=3641).  These  deliberations  highlighted  
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opportunities  for epidemiologists  to enhance  scientific  research in general,  as well as  to  address  

issues related to the development and use of epidemiologic data in risk assessment.   

Uncertainty  

The National Research Council (NRC 2009) defined uncertainty as the “lack or incompleteness 

of information” critical for the risk assessment process. Uncertainty in an epidemiologic study 

can arise from both random and systematic error from a study, while uncertainty in a risk 

assessment can arise from internal and external validity concerns arising from one study or set of 

studies. Thus, the characterization of scientific uncertainty can provide risk assessments with a 

level of confidence regarding decisions that are being made and allows for evaluation of the 

degree that uncertainty plays in the analysis of consequences of specific policies. The NRC 

recommended that “risk assessments should characterize and communicate uncertainty in all key 

computational steps of risk assessments” while recognizing that “uncertainty analysis and 

characterization pose difficult technical issues, and in general related best practices have not 

been established.” Thus, determining the nature and magnitude of uncertainties remains one of 

the key challenges in risk assessment. 

Because results across epidemiologic, toxicologic and clinical data may be discordant at times, 

there is a distinct need to understand and characterize sources of uncertainty within each of these 

areas to characterize potential risk and hazard for risk assessment purposes. A comprehensive 

analysis of uncertainty across all data sources can act as a bridge to foster the integration 

necessary to focus further research, improve risk assessment, and understand potential impacts 

on human health. 
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Uncertainty  Issues  and  Recommendations   

1) Improved characterization and discussion of plausible sources of uncertainty w   ould  be 

beneficial in all epidemiologic reports and publications

The potential for bias in epidemiologic studies is routinely acknowledged in published reports 

but is nearly always limited to a qualitative discussion (Jurek et al. 2006). Even quantitative 

discussions of selection bias, for example, are typically limited to examinations of participation 

rates or to potential sampling bias due to self-selection. In addition, the potential for residual 

confounding by measured or unmeasured factors is often acknowledged but the magnitude and 

direction are usually unknown or unstated. Thus, characterizing and documenting the 

relationships (i.e. the direction and magnitude of associations) among potential confounders, 

exposures and outcomes of interest is critical. Knowing the direction of a potential confounder 

(e.g., positive or negative confounding) could enable epidemiologic data to be used in the hazard 

identification stage of a risk assessment or for dose-response assessments if the magnitude of 

confounding is also known or the uncertainty from this source of bias could be quantified. 

Addressing these possible sources of bias in an epidemiologic study may allow risk assessors, to 

the extent possible, to quantify the consequences of any bias in a specific study or across a group 

of similar studies. Although not a type of bias, an additional source of uncertainty is related to 

generalizing study results beyond the sample population being examined in an epidemiologic 

study. Characterizing variability in risk among different susceptible populations will ultimately 

make epidemiologic study results more relevant to risk assessment efforts and risk management 

decision-making. 

8 



 
 

2) Conduct more validation studies and uncertainty analyses of epidemiologic study   

findings  

The  overall  impact  of  different  sources  of  uncertainty on epidemiologic  results  is  infrequently 

considered  in epidemiologic  publications  and data  sufficient  to allow  the  reader to undertake  

independent  uncertainty assessments  are  often not  presented (Jurek et  al. 2007).  This  is  

essentially the  lowest  tier (i.e., Tier 0) of  uncertainty analyses  recognized by the  National  

Research Council (2009):   

• 	 Tier 0: Default assumptions—single value of result.  
• 	 Tier 1: Qualitative but systematic identification and characterization of uncertainty.  
• 	 Tier 2: Quantitative evaluation of uncertainty making use of bounding values, interval  

analysis, and sensitivity analysis.    
• 	 Tier 3: Probabilistic assessment with single or multiple outcome distributions reflecting 

uncertainty and variability.   

It  is, therefore,  recommended that  investigators  obtain additional  data  needed to facilitate  

uncertainty analysis  and undertake  at  least  a  qualitative  assessment  of  uncertainty, including all  

recognized sources  or justifying their omission.  A  qualitative  characterization would include  

identifying possible  sources  and beginning to assess  the  sources, direction and magnitude  of  

uncertainty.  The  potential  ramifications  of  each source  of  uncertainty should be  addressed and  

some  crude  classification or categorization approaches  could be  developed (e.g. low, 

intermediate  or high uncertainty)  with respect  to  a  given source.  When sources  of  uncertainty can 

be  identified but  not  fully quantified within a  study or set  of  studies, there  may  be  default  data  

available  that  can be  useful  in estimating a  possible  range  of  values  (Sturmer et  al. 2007).  Indeed, 

there  may also be  a  complete  lack of  data  that  contribute  to the  uncertainty.  However, 

investigators  could consider the  direction and magnitude  of  the  potential  uncertainty (i.e. 

confounding and/or bias).  Such data  would allow  for higher tiers  of  uncertainty analyses.  
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Methodologic  guidance  and software  for quantitative  bias  analysis  have  also become  available  

(Lash et  al. 2009)  but  are  not  yet  common in risk assessment.  Ideally, to facilitate  the  highest  tier 

of  uncertainty analysis, a  quantitative  assessment  of  individual  and conjoint  sources  of  

uncertainty would be  included in every epidemiologic  study.  The  conduct  of  more  validation  

studies  and sensitivity analyses  is  also recommended  to better understand methodological  issues  

and sources  of  uncertainty  (Chatterjee  and Wacholder  2002), (e.g. Greenland 1996;  Rosenbaum  

2005; Schneeweiss 2006; VanderWeele and Arah 2011).   

3) Improve communication about epidemiologic uncertainty  

Full disclosure of uncertainty in epidemiology is encouraged as a matter of transparency. 

Characterization and quantification of uncertainty should increase such that the basis of decisions 

and assumptions are clear, either within the publication or in supplemental information. 

Epidemiologists and their peer scientists should encourage publications and other 

communications to include the necessary study-specific data on internal data relationships 

relevant to selection bias, information bias and confounding for quantitative bias analysis to 

assess uncertainty (Lash et al. 2009). Reviewers of manuscripts should also recommend 

qualitative, and if possible quantitative, discussions of uncertainties. The objective is that such 

information be more routinely collected and reported. 

4) Develop a broader matrix of sources of uncertainty for the overall risk assessment   

process, with the goal of harmonization of uncertainty assessment across different   

disciplines  

Risk assessments consider the totality of the evidence (i.e., epidemiology, toxicology, and other 

lines of scientific evidence, as well as any other knowledge in the context of risk) when 
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determining the  weight  of  evidence. Other lines  of  evidence  such as  toxicology and mode  of  

action can be  used to inform  the  interpretation and use  of  epidemiologic  data  in risk assessment.  

Since  uncertainties  exist  in all  lines  of  scientific  endeavor, each source  of  uncertainty across  

these  areas  should be  considered in assessing  uncertainty in the  overall  risk assessment.  Previous  

efforts  have  recommended harmonization of  the  incorporation of  uncertainty in risk assessment, 

primarily focusing on the  use  of  default  uncertainty values  from  toxicological  data  (Sonich-

Mullin et  al. 2001).  Consequently, harmonization of  sources  of  uncertainty across  epidemiology  

and  toxicology should be  undertaken in a  systematic  manner that  will  make  for more  transparent  

decision-making.   

Exposure  Assessment   

Exposure science aims to quantify the intensity, frequency, duration, and timing of human 

contact with chemical, physical, or biological agents occurring in the environment, and may be 

used to further inform evaluation of causality in the environmental source-to-health outcome 

continuum (Barr 2006). Within exposure science, exposure assessment specifically deals with 

several distinct aspects that underlie the risk assessment process, including the exposure 

source(s), the environmental pathway(s), environmental concentrations, human exposures, and 

dose. 

Data are rarely available on biologically relevant dose metrics (e.g., absorbed dose, effective 

dose, etc.) in the organ or tissue of interest in epidemiologic studies; thus, dose is often estimated 

indirectly using exposure metrics. These surrogate estimates of exposure are subject to 

measurement error since they may rely on imperfectly measured concentrations in the individual, 

or models of transport and fate in the environment or workplace. Additionally, measurement 
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error may result  from  estimates  of  the  distribution of  human uptake  over time  (e.g., use  of  

physiologically based pharmacokinetic model), or collection of activity use pattern data.   

Similar to measurement  error and resulting misclassification of  health outcome  data, exposure  

misclassification is  important  to characterize  in epidemiologic  studies  because  it  can distort  

exposure-response  relationships  and lead to biased or  imprecise  results.  Exposure  measurement  

error can be  differential  or non-differential  with respect  to variation in disease  status.  Exposure  

measurement  error can lead to exposure  misclassification when exposure  surrogates  for 

individual participants are classified into categories for analysis.  

Differential  misclassification can arise  in categorical  exposure  metrics  even when there  is  non-

differential  error (i.e., independent  of  disease  status) in an exposure  variable  that  is  measured on 

a  continuous  scale  (Flegal  et  al. 1991).  In order for epidemiologic  studies  to be  evaluated and 

utilized appropriately in risk assessment, it  is  important  that  exposure  measurement  error is  

characterized and evaluated thoroughly with consideration of  the  magnitude  and direction of  any 

potential  exposure  misclassification bias  (for example,  see  Bergen et  al. 2013).  This  information 

is  useful  for risk assessors  when they evaluate  the  potential  for  bias  and confidence  placed on 

study results.   

Exposure  Assessment  Issues  and Recommendations   

1) An interdisciplinary perspective is needed during the study design phase to ensure that   

biologically relevant quantitative exposure-response information is collected that will be  

useful for risk assessment purposes  

During the study-design phase, an interdisciplinary team including experts, for example, in 

epidemiology, exposure assessment, industrial hygiene, and analytical chemistry, should be 
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assembled to develop robust  exposure  assessment  approaches.  This  might  include  consideration 

of  targeted data  collection strategies,  such as  collection of  exposure  or surrogate  data  based on 

the  appropriate  biological  matrix, sample  number, and the  critical  exposure  window(s).  Other 

constraints  that  can be  addressed include  sources  of  exposure  variability, availability of  

resources,  participant  burden and ethical  considerations  (with Institutional  Review  Board review, 

as  appropriate).  This  interdisciplinary approach will  allow  for collection of  biologically relevant  

exposure  data  to increase  the  potential  for quantification  of  exposure-response  relationships  that  

will be useful for risk assessment and risk management purposes.    

2) Develop ex  posure assessment approaches that are transparent and w ell-characterized  

It is recommended that study authors should discuss the nature (i.e., type, direction and 

magnitude) and likelihood of any expected exposure measurement error and misclassification 

bias. An evaluation of measurement error and any resulting impact on effect estimates would 

provide risk assessors with information to weight studies by the quality of the exposure 

assessment, the methods used to adjust for exposure measurement error and the likelihood that 

exposure measurement error contributes to uncertainty in effect estimates in epidemiologic study 

results. Characterization of exposure data quality may include steps to make exposure data 

publicly available so that risk assessors can perform secondary data analyses, including 

sensitivity and uncertainty analyses. 

3) Quantify exposure measurement error and examine and correct for its impact on effect   

estimates  

Ignoring uncertainty in exposure estimation can produce bias when such estimates are used to 

examine associations with adverse health effects (Carroll et al. 1995). Although epidemiologic 
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publications infrequently present detailed information on the potential impact of measurement 

error (Jurek et al. 2006; Spiegelman 2010), epidemiologic study results would be enhanced by 

detailing exposure assessment assumptions and characterizing measurement error to allow risk 

assessors to gauge the potential impact of this error. This should include characterization of 

different sources and types of measurement error. The sources and types can be based on various 

assumptions used in exposure modeling efforts including unaccounted inter- and intra-individual 

variability in exposure patterns (Kromhout et al. 1993; Symanski et al. 2007), or from variability 

based on limited monitoring data. Once these different types and sources of measurement error 

are identified, bias analyses should be included to examine uncertainty due to the use of different 

exposure metrics in relation to what is known about the critical exposure period or evaluation of 

specific parameter estimates (e.g., half-life considerations of biological measures) or other 

modeling assumptions, such as the validity of the underlying input data (e.g., chemical 

monitoring data) and modeling data (e.g., fate and transport models) used to estimate exposure 

concentrations. Statistical techniques, both non-Bayesian and Bayesian, are available to allow for 

the correction of biased effect estimates due to exposure measurement error. Examples of non-

Bayesian methods for accounting and adjusting for exposure measurement error include 

conditional likelihood methods (Guolo and Brazzale 2008; Lash and Fink 2003; Lash et al. 2009; 

Maldonado 2008; Stram et al. 2003) such as regression calibration (Spiegelman 2010) and 

conditional scores procedures (McShane et al. 2001), while Bayesian methods exist that can be 

used for both binary and continuous exposures (Espino-Hernandez et al. 2011; Liu et al. 2009; 

Prescott and Garthwaite 2005; Rice 2003). 
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4) Develop improved methods for assessing exposures to multiple environmental chemicals  

and multiple routes of exposure  

Traditionally, risk assessments have focused primarily on single chemicals. However, this does 

not reflect human exposure conditions. There is a recognized need to focus on multi-media 

sources of exposure to individual chemicals, as well as complex mixtures. This is an area of 

research where observational studies, such as epidemiology, are an improvement over 

experimental studies because they can more readily address multiple exposures simultaneously. 

It is important that epidemiologists continue to develop and evaluate methods for assessing 

exposure to complex mixtures in order to better characterize exposure assessment and to allow 

for the evaluation of effect measure modification and confounding. This would establish a robust 

scientific database necessary to conduct cumulative risk assessments. The understanding of the 

relationships among complex exposures will require modeling of monitoring data and other 

exposure determinants and development of techniques for assessing exposures to mixtures that 

result in unbiased or minimally biased effect estimates (Carlin et al. 2013). Additionally, 

approaches such as multivariate source receptor modeling represent promising avenues for 

assessing exposure to complex mixtures (Hopke 2010), although further work is needed to 

account for key sources of uncertainty in such models. The development of efficient, easily-

measured, cost-effective exposure surrogates for key mixtures of concern will be important, and 

will include its own challenges for identifying and quantifying exposure measurement error. For 

example, it will be important to understand how the type and structure of measurement error may 

differ across different individual mixture components or for a surrogate representing exposure to 

the whole mixture. Techniques are needed to characterize and adjust for exposure measurement 

error of chemical mixtures. 
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Analytic  Tools  in  Epidemiology   

As epidemiologic data are key inputs for risk assessments, it is important to apply methodologies 

that better characterize validity and precision of study results. The methods considered can be 

broadly classified as (1) frequentist methods to address study biases systematically and 

quantitatively, (2) Bayesian statistical techniques, which utilize prior knowledge addressing 

causal hypotheses and estimation problems under evaluation, and (3) computational methods 

(e.g., cross-validation, re-sampling techniques, and boosting and model ensemble techniques), 

which provide valid statistical inferences without requiring strong a priori modeling 

assumptions. Each of these broad approaches addresses validity and characterizes the uncertainty 

of results from a single study and extends to improved characterization of epidemiologic results 

in weight of evidence assessments. 

The analytic methods group discussion included four specific areas that facilitate causal 

interpretation in epidemiology: (1) the use of directed acyclic graphs [DAGs - diagrams 

consisting of variables connected by arrows or lines to depict often complex relationships (Joffe 

et al. 2012)], (2) summarizing epidemiologic results using Bayesian posterior distributions, (3) 

strategies for quantitatively evaluating measurement error, and (4) formally assessing causality 

as it relates to policy decisions. Each of these areas led to a set of recommendations. These areas 

served as the basis for further discussion of related topics such as primary versus secondary 

analyses, journal requirements, epidemiology curricula, and data sharing practices. 
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Analytic  Methods:  Issues and Recommendations  

1) The application of directed acyclic graphs (DAGs) should be encouraged more broadly  

Joffe and colleagues (2012) describe how DAGs make explicit the assumed or estimated 

relationships among unobserved and measured variables, indicating the causal direction of the 

potential relationships. As described, DAGs are considered to be an appropriate method to 

illustrate causal hypotheses and to specify the structure of associations between variables of 

interest. They also provide a useful way to represent assumptions, especially conditional 

independence assumptions, necessary for statistical analyses and causal inference. Lastly, DAGs 

are helpful for determining which factors may be confounders or effect modifiers of an 

association between exposure and outcome (VanderWeele and Robins 2007). DAGs provide 

transparent representations of a hypothesis as well as justification for specific analytic strategies 

to be applied during the investigation such as identification of causal intermediates. DAGs can 

also clarify methodologic challenges, such as illustrating selection bias (Flanders and Klein 

2007; Hernán et al. 2004). It is recommended that journal editors request that DAGs be included 

in supplementary material (Westreich and Greenland 2013). 

2) Incorporate prior know ledge through Bayesian methods   

Bayesian statistical analysis differs from frequentist methods in that Bayesian analyses use 

information that exists before study data are collected and analyzed (i.e., “prior” distributions) to 

update what can be learned about a specific problem after conducting a study by expressing new 

state of knowledge as “posterior” distributions. Results from the literature or other data sources 

are used to specify the a priori distribution for any parameters, such as the size and direction of 

exposure-outcome associations and the extent of measurement error. Subsequently, the study 
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results  generated by the  analysis  can assess  the  conditional  probability distribution of  parameters  

of  interest  (the  posterior distribution) by reconciling the  data  observed, the  analytic  model  fitted 

to the study data, and the prior information incorporated into the analytic model  (Bolstad 2007).   

Bayesian techniques  can also allow  for simultaneous  correction for sources  of  bias  such as  

measurement  error and confounding (de  Vocht  et  al. 2009;  Steenland and Greenland 2004)  that  

are  typically treated in isolation in current  practice  of  epidemiology (Gustafson and McCandless  

2010).  Although these  techniques  are  not  routinely employed, specification of  prior model  

probabilities  by investigators  is  inherent  in grant  proposals, the  introduction section of  a  study 

publication, and the  subjective  interpretation of  results  (Goodman 2001).  Thus, it  could be  

argued that  current  practice  involves  presenting Bayesian considerations  of  a  research article,  

while  the  reported results  often rely on frequentist  analysis  and qualitative  interpretations  (Pearce  

and Corbin 2013).  

3) Measurement error should not be ignored in any analysis of epidemiologic results and  

should be assessed using quantitative  methods  

Measurement error is an almost universal limitation of epidemiologic studies and their analyses. 

The current practice of acknowledging it diffusely with a brief discussion that frequently invokes 

its theoretical impact, e.g., that it is most likely to be non-differential and results in potential for 

bias towards a null result, will not improve epidemiologic input into risk assessments. Strategies 

for correcting for the bias due to measurement error quantitatively are described in textbooks and 

can be readily implemented for many study designs. These include regression calibration, 

simulation-extrapolation, Bayesian approaches (Carroll et al. 1995; Gustafson 2004), and 

computational statistical approaches (e.g., multiple imputations, data augmentation, and 

expectation-maximization algorithms). Attention should be given to correcting for measurement 
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error available  in commonly used epidemiologic  software  platforms  such as  rcal  in STATA  

(http://www.stata.com/merror/rcal.pdf) (Hardin 2003)  or PROC CALIS  in SAS.  Peer reviewers  

and journal  editors  should expect  formal  quantitative  assessments  of  measurement  error and 

related biases, as  well  as  correction for bias  that  it  creates, rather than relying on qualitative  

discussions.  In addition, adequate  funding should be  designated  for exposure  validation studies  

and granting agencies  should allow  for such validations  as  essential  criteria  for funding 

epidemiologic research (Heid et al. 2004).   

4) Distinguish associations from causes  

Formal  causality assessments  are  important  and impact  policy decisions.  The  synthesis  of  

epidemiologic  studies  can be  the  primary basis  for regulation and policy actions.  Without  state-

of-the-art  analytic  techniques  being used more  routinely in epidemiologic  studies  and other lines  

of  evidence, the  benefits  and costs  of  recommended interventions  or action could be  

misestimated;  and apparent  cost-effective  interventions  may be  ineffective. In particular, it  is  

unwarranted to assume  that  a  specific  statistical  association represents  a  causal  effect, such that  

changing the  predictor variable  would cause  a  corresponding change  in the  outcome  variable  

(Freedman 2004).  Indeed, the  distinction between structural  and reduced-form  equations  in 

econometrics, and phenomena  such as  Simpson's  Paradox, demonstrate  that  (reduced-form) 

regression coefficients  need not  even have  the  same  sign as  corresponding causal  coefficients  

showing how  a  change  in an explanatory variable  would change  the  dependent  variable  (Pearl  

2009).   

Although epidemiologists  are  aware  of  basic  threats  to inferential  validity from  observational  

studies, there  is  little  agreement, even amongst  workshop participants, on whether 
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epidemiologists  should consider policy implications  of  declaring an association to be  causal.  One  

view  expressed was  that  epidemiologists  should primarily conduct  research that  supports  or 

refutes  qualitative  statements  about  causation, as  in showing that  an exposure  “causes”  a  specific  

disease.  This  viewpoint  emphasizes  epidemiology’s  role  in hazard identification, i.e., an early 

stage  of  risk assessment  for which putative  threats  to health are  identified as  causal.  Another 

viewpoint  was  that  epidemiologic  results  could be  used to conceptualize  causation in the  context  

of  population health, as  in showing that  some  modifiable  exposure  is  capable  of  causing 

important  changes  in health of  population overall.  This  would more  closely align epidemiology 

with the  risk characterization phase  of  risk assessment  where  costs  and benefits  of  risk 

management  interventions  are  weighted and risks  are  appraised quantitatively (Phillips  2001).  

Alternative  outcomes  analysis  is  an example  of  a  technique  that  can provide  important  insights  in  

distinguishing association from  causation, and could be  more  routinely applied in assessing 

causal  inference  and attributable  risk estimation (Jager et  al. 1990;  Meijster et  al. 2011a;  Meijster 

et  al. 2011b;  Thomsen et  al. 2006).  Alternative  outcomes  analysis  allows  for the  

conceptualization of  causation in terms  of  causes  of  meaningful  versus  ignorable  consequences  

assuming these  can be  readily differentiated into one  of  these  two options.  Regardless  of  how  

epidemiologic  data  align with the  risk assessment  paradigm, epidemiologic  practice  should adopt  

methods  that  apply state-of-the-art  techniques  to address  uncertainty and other study limitations  

and to help contextualize  epidemiologic  study results  in terms  of  causality and public  health 

intervention.  

Conclusions and Future Directions   

Epidemiologic data are critical for risk assessment efforts, but are rarely conducted with 

quantification of uncertainty, which may limit their use in risk assessments. The HESI 
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Epidemiology Subcommittee  workshop focused on strengthening the  utility and application of  

epidemiology studies  by recommending improvements  in analytic  methods, exposure  assessment  

approaches and other techniques to quantify and account for specific sources of uncertainty.    

Several  recommendations  resulted  from  this  effort.  Specific  statistical approaches  and analytical  

techniques, such as  increased use  of  quantitative  bias-analysis, DAGs  and Bayesian  analyses, are  

available  for improving the  inferences  drawn from  epidemiologic  results  and currently  used  

infrequently.  Additionally, new  methods  may be  needed for assessing exposure  and 

characterizing uncertainty related  to  chemical  mixtures.  Other deliberations  in the  workshop 

highlighted the  complete  reporting of  all  data  elements  and analytical  tables  to permit  others  to 

conduct  uncertainty analyses  (either in the  journal  supplemental  appendices  or through the  

investigators’  institution).  Specifically, increased transparency  of  results  would improve  weight  

of  evidence  evaluations  and collaboration amongst  researchers  in other disciplines  would 

improve study designs and analytical approaches , particularly for exposure assessment.   

Although there  are  multiple  strategies  for quantifying and reducing  measurement  error,  there  are  

barriers  for routinely applying these  techniques.  A key  disincentive  is  that  substantial  time  and 

effort  can be  required to conduct  validation or reliability studies,  which can put  a  strain on 

research budgets.  There  may also be  a  perception that  analyses  of  exposure  measurement  error 

tends  to decrease  the  estimated precision of  reported results, thereby increasing  the  probability of  

a “false-negative”  result  (Blair et  al. 2009).  It  has  been suggested that  exposure  measurement  

error  and resulting misclassification is  more  likely to be  non-differential  by disease  status  in 

epidemiology studies  and will  most  frequently result  in  false  negatives  through attenuation of  

effect estimates (Blair et  al. 2007).  This  assumption is  made  despite  evidence  from  statistical  

literature  that  the  impact  of  exposure  measurement  error can be  profound and complex and that  it  
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is  difficult  to anticipate  its  impact  on effect  estimates  in an individual  study (Gustafson 2004).  

Since  many manuscripts  are  routinely accepted without  analyses  quantifying uncertainty, 

validated exposure  assessment  or use  of  advanced analytic  methods, there  is  little  incentive  to 

adopt  the  recommendations  made.  Funding organizations, peer reviewers, and journal  editors  

should be catalysts for change in this effort.   

The  discussions  and recommendations  from  this  workshop demonstrate  that  there  are  practical  

steps  that  the  scientific  community can adopt  to strengthen epidemiology data  for decision 

making.  Use  of  available  methods  to  quantify and adjust  for uncertainty will  help  reduce  the  

potential  impact  of  different  sources  of  error and bias  and help achieve  better decisions  for risk 

assessment, policy and ultimately, public health.  
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